A memetic algorithm for the minimum sum
coloring problem

Yan Jin, Jin-Kao Hao *, Jean-Philippe Hamiez

LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France
Computers € Operations Research }3(3): 318-327, 201/

Abstract

Given an undirected graph G, the Minimum Sum Coloring Problem (MSCP) is to
find a legal assignment of colors (represented by natural numbers) to each vertex of
G such that the total sum of the colors assigned to the vertices is minimized. This
paper presents a memetic algorithm for MSCP based on a tabu search procedure
with two neighborhoods and a multi-parent crossover operator. Experiments on a
set of 77 well-known DIMACS and COLOR 2002-2004 benchmark instances show
that the proposed algorithm achieves highly competitive results in comparison with
five state-of-the-art algorithms. In particular, the proposed algorithm can improve
the best known results for 15 instances.

Keywords: Sum coloring, memetic algorithm, heuristics, combinatorial optimiza-
tion

1 Introduction

Let G = (V, E) be a simple undirected graph with vertex set V' = {vy,...,v,}
and edge set £ C V x V. A proper k-coloring ¢ of GG is a mapping ¢ : V —
{1,...,k} such that c(v;) # c(vj), Y{v;,v;} € E. A legal or proper k-coloring
can also be defined as a partition of V' into k independent sets or stables
Vi,..., Vi such that Vu,v € V; (i =1,...,k),{u,v} ¢ E. The classical Graph
Coloring Problem (GCP) aims at finding a proper k-coloring with & minimum.

This paper is dedicated to the NP-hard Minimum Sum Coloring Problem
(MSCP) [10,11], which is closely related to GCP. The objective of MSCP is
to find a proper k-coloring which minimizes the sum of the colors assigned

* Corresponding author.
Email address: hao@info.univ-angers.fr (Jin-Kao Hao).

Preprint submitted to Elsevier 27 September 2014

to the vertices. This minimum is the chromatic sum X(G) of G: ¥(G) =
min.cc f(c), with C the set of all proper k-colorings of G (for all possible k
values) and f(c) = S0, c(v;), or f(c) = S5, [|Vi] equivalently (where |V}| is
the cardinality of V;), the “coloring sum” of the proper k-coloring ¢. MSCP
applications include VLSI design, scheduling, and resource allocation [15].

Considering the theoretical intractability of MSCP, a number of heuristic al-
gorithms have been proposed to find suboptimal solutions, such as a parallel
genetic algorithm [9], two greedy heuristics [12], a tabu search metaheuristic
2], a memetic algorithm (MA) [17], an independent set extraction heuristic
(EXSCOL) [21], a local search heuristic (MDS5) [7], and a breakout local
search (BLS) [1]. To our knowledge, EXSCOL, MDS5, MA and BLS are the
state-of-the-art algorithms in the literature. EXSCOL is based on extracting
large disjoint independent sets and is particular effective for handling large
graphs (with at least 500 vertices). MDS5 is based on variable neighborhood
search and iterated local search. MA uses a local search procedure within a
genetic algorithm. BLS is an iterated local search algorithm with an adaptive
perturbation mechanism.

This paper introduces another Memetic Algorithm for the minimum Sum Col-
oring problem (MASC), which relies on three key components. First, a double-
neighborhood tabu search procedure is especially designed for MSCP (DNTS).
DNTS is based on a token-ring application of two complementary neighbor-
hoods to explore the search space and a perturbation strategy to escape from
local optima. Second, a multi-parent crossover operator is used for solution
recombination. Basically, it tries to transmit large color classes from the par-
ents to the offspring. Finally, a population updating mechanism is devised to
determine how the offspring solution is inserted into the population.

We evaluate the performance of MASC on 77 well-known graphs from DI-
MACS and COLOR 2002-2004 graph coloring competitions. The computa-
tional results show that MASC can frequently match the best known results
in the literature for most cases. In particular, it improves the previous best
solution for 15 graphs for which an upper bound is known.

The paper is organized as follows. Next section describes the general frame-
work and the components of our MASC memetic algorithm, including the
population initialization, the crossover operator and the double-neighborhood
tabu search procedure. Detailed computational results and comparisons with
five state-of-the-art algorithms are presented in Section 3. Before concluding,
Section 4 investigates and analyzes three key issues of the proposed memetic
algorithm.

2 MASC: A Memetic Algorithm for minimum Sum Coloring

A memetic algorithm is a population-based approach where the traditional
mutation operator is replaced by a local search procedure [18,19]. Memetic
algorithms are among the most powerful paradigms for solving NP-hard com-
binatorial optimization problems. In particular, they have been successfully
applied to the tightly related GCP [4,13,16,20].

Our MASC algorithm is summarized in Algorithm 1. After population initial-
ization, MASC repeats a series of generations (limited to MaxGeneration) to
explore the search space which is defined by the set of all proper k-colorings
(k is not a fixed value, Section 2.1). At each generation, two or more parents
are selected at random (line 6) and used by the dedicated crossover operator
to generate an offspring solution (line 7, Section 2.3). The offspring solution is
then improved by a double neighborhood tabu search (line 8, Section 2.4). If
the improved offspring has a better sum of colors, it is then used to update the
current best solution found so far (lines 9-10). Finally, the population updat-
ing criterion decides whether the improved offspring will replace one existing
individual of the population or not (line 12, Section 2.5).

Algorithm 1 An overview of the MASC memetic algorithm for MSCP

: input: A graph G

output: The minimum sum coloring ¢, found and its objectif f(c.)

Population Initialization(P, p) /* Population P has p solutions, Sect. 2.2 */

f« < mingep f(c) /* f« records the best objective value found so far */

for i < 1 to MaxGeneration do
P’ + Selection(P) /* Select 2 or more parents at random for crossover */
o0 < Crossover(P’) /* Crossover to get an offspring solution, Sect. 2.3 */
0 < DNTS(o) /* Improve o with the DNTS procedure, Sect. 2.4*/

9: if f(o) < f« then

10: fe < f(0);ex <0

11: end if

12: Population_Updating(P, 0) /* Sect. 2.5 */
13: end for

14: return f,, c,

As we observe in the rest of this section, compared to the algorithm of [17]
which is also based on the memetic framework, our memetic algorithm uses
quite different design for the key components (initial population, crossover,
local search, population management) of our MASC algorithm.

2.1 Search Space and Fvaluation Function

The search space explored by MASC is the set C of all proper k-colorings of G
(k is not fixed). For a given proper k-coloring ¢, its quality is directly assessed
by the sum of colors f(c) = ¥,y c(v) = X8 1|Vi].

2.2 Initial Population

Our algorithm begins with a population P of p feasible colorings. This popula-
tion can be obtained by any graph coloring algorithm that is able to generate
different proper colorings for a graph. In our case, we employ the well-known
TABUCOL [8], more precisely its improved version introduced in [4]. For a
given graph G, TABUCOL tries to find a proper k-coloring where k is the
best known result for GCP, i.e., the smallest k£ for which a k-coloring is known
in the literature. If TABUCOL cannot reach a proper k-coloring for the cur-
rent k value, TABUCOL is restarted with %k increased by 1 (this makes the
task of finding a legal coloring easier). This process is repeated until a proper
k-coloring is obtained. Each resulting k-coloring is then submitted to the ded-
icated DNTS procedure to improve its coloring sum (see Sect. 2.4). Each
improved k-coloring is finally inserted into P if the coloring is not already
present in P (discarded otherwise). This process is repeated until P is filled
with p different k-colorings. Notice that the solutions generated by TABUCOL
may take different k& values due to the stochastic nature of TABUCOL. Also
in Section 4.3, we provide a comparative study to show to which extent the
solutions can be improved by the proposed MASC approach.

2.8 Crossover Operator

The crossover operator is an important component in a population-based algo-
rithm. It is used to generate one or more new offspring individuals to discover
new promising search areas.

MASC uses a multi-parent crossover operator, called MGPX, which is similar
to the one introduced in [6] as a variant of the well-known GPX crossover first
proposed in [4] for GCP (restricted to two parents). MGPX generates only one
offspring solution o from « parents randomly chosen from P, where « varies
from 2 to 4 according to |V| and the best k-coloring found for GCP (see Eq.

).

2,if |V|/k <5
a=13,if5 < |V|/k<15 (1)

4, otherwise

Motivations for these « values can be found in [20]. The dense graphs obviously
need more colors £ such that the average color class sizes become very low
(|V]/k < b, i.e., the classes become very small). In this case, it is better to
use 2 parents in order to avoid excessive disruptions when blending the color
classes. Inversely, the sparse graphs need fewer colors such that the average
class sizes are very high (|V|/k > 15). In this case, we use more parents (4 in
our case) in order to increase the probability of selecting and inheriting good
classes from different parents. Besides, we choose 3 parents for the graphs
between these two extreme situations.

Algorithm 2 Pseudo-code of the MGPX combination operator
: input: A set P’ of o parents randomly chosen from P
output: An offspring o
v <— 0 /* Counts the number of colored vertices in o */
K < 0 /* Counts the number of colors used in o */
w < 0 /* Counts the iterations */
Set forbidden length for each parent: 7(P;) =0,i =1, ...,«
while v < |V| do
K Kk+1
Indicate the non-forbidden parents: Ps={P;|7(F;) < w}
Find the maximum cardinality class V{ (V{ € P;) from P;
v v+ |V
for all v € V*j do
13: o(v) < kK
14: Remove v from « parents P’
15: end for
16: 7(Pj) < w+ |a/2]| /* Forbid parent P; for |a/2| steps */
170 w+w+1
18: end while

19: return o

[
*—‘O"OOO\‘@@*PWN"—‘

—_
N

MGPX is summarized in Algorithm 2. It builds the color classes of the o off-
spring one by one, transmitting as many vertices as possible from the parents
at each step (for quality purpose) (lines 8-15). Once a parent has been used
for transmitting an entire color class to o, the parent is not considered for
|a/2] steps with the purpose of varying the origins of the color classes of o
(line 16). This strategy avoids transmitting always from the same parent and
introduces some diversity in o [13]. Note that the offspring solution is always
a proper k coloring while the number of colors used by the offspring can be

PL@bcdel U h [mnr U L b O h [mnT
P,[abc|dedh| mn ru |Vo-tabcde} U h m n r_u
P[ab [cded[hmn|[I U Jemove ab,cd, ¢ Y h m n ru
offspring 0 forbid P, for 1 step abcde
Py 0 h M U g T
2 —
P, J h m n T u Vo—{hmn}‘ Y r u
= g hmn| T U |remove h mn J ru
offspringo [abcde forbid P,for 1 step abcdefh mn
P
1 Y r u Y
P, g ro(ves{iru - o)
L 9 ru remove I, U 9
offspringo [abcdef h m n forbid Pyfor1step 2P CAE[N M| T U
P
1 Y
P, o] Vg={ g} R
R Y remove @ ”
offspringo [ADCde[h mn| T U forbid Pyfor1step 2P CAE[h M Nn] T U

Fig. 1. An illustrative example of the MGPX crossover

higher than those of the considered parents.

Figure 1 illustrates the detailed operations of our MGPX crossover. In the
example, there are 3 parents (o = 3) with & = 4 colors, and 11 vertices
a,b, ...,u. The forbidden length for each parent is initially set to 0 (7(P;) = 0)
which means all three parents can be selected at the beginning of the MGPX
operator. At the first step, the largest color class {a,b,c,d, e} in parent P; is
chosen to become the first class V! of the offspring 0. Then vertices a, b, c, d, e
are removed from all three parents. And parent P; is forbidden for 1 step
(la/2] = |3/2] = 1). Similarly, we build the color class V? = {h,m,n}
from parent P3, V> = {r,u} from parent P, and V! = {g} from parent P
respectively. After four steps, all the vertices are assigned such that a complete
offspring is constructed. One notices that in this example, the sum of colors
in the offspring is better than or equal with its parents.

2.4 A Double-Neighborhood Tabu Search for Sum Coloring

Local optimization is another important element within a memetic algorithm.
In our case, its role is to improve as far as possible the quality (i.e., the
sum of colors) of a given solution returned by the MGPX crossover operator.
This is achieved by a Double-Neighborhood Tabu Search (DNTS) procedure
specifically designed for MSCP (see Algorithm 3).

DNTS is based on tabu search [5] and uses two different and complementary
neighborhoods N; and N, which are applied in a token-ring way [3,14] to
find good local optima (intensification) (lines 2-14). More precisely, we start
our search with one neighborhood (lines 6-9) and when the search ends with

its best local optimum, we switch to the other neighborhood to continue the
search while using the last local optimum as the starting point (lines 10-13).
When this second search terminates, we switch again to the first neighborhood
and so on. DNTS continues the exploration of each neighborhood N; (i = 1,2)
until u; (i = 1,2) consecutive iterations fail to update the best solution found.

This neighborhood-based intensification phase terminates if the best local op-
timum is not updated for z1, consecutive iterations (line 14). At this point, we
enter into a diversification phase by triggering a perturbation to escape from
the local optimum (line 15, Section 2.4.4). The DNTS procedure stops when
a maximum number of iterations Maxlters is met. We explain below the two
neighborhoods, the tabu list management and the perturbation mechanism.

Algorithm 3 Pseudo-code of double-neighborhood tabu search for MSCP

1: Input: Graph G, a k-coloring ¢

2: Output: the best improved k-coloring

3 e ¢

4: while a stop condition is not met do

5. repeat

6: ¢ < TS(Ny,c,p1) /* Tabu search with neighborhood Ny, Sect. 2.4.1 */
T if f(c) < f(cx) then

8: c* ¢

9: end if
10: ¢ « TS(Ng,c,u2) /* Tabu search with neighborhood Nj, Sect. 2.4.2 */
11: if f(c) < f(cy) then
12: Cy & C
13: end if

14: until ¢, not improved for 1, consecutive iterations

15: ¢ + Perturbation(c.) /* Search is stagnating, generate a new starting
solution by perturbing the best k-coloring found so far, Sect. 2.4.4 */

16: end while

2.4.1 Np: A Neighborhood Based on Connected Components

The first neighborhood N; can be described by the operator Fxzchange(i, j).
Given a proper k-coloring ¢ = {Vi,..., Vi }, operator Exchange(i,j), (1 <i #
J < k) swaps some vertices of a color class V; against some connected vertices
of another color class V;. Formally, let G;;(c) be the set of all connected
components of more than one vertex in the subgraph of G induced by color
classes V; and V; in a proper k-coloring c. For a k-coloring ¢, the size of
neighborhood N is bounded by O(% x k(kz_ U (n is the number of vertices). In
Figure 2 (left) for instance, G; j(c) is composed of two graphs (say g and g2): g1
is the subgraph induced by {vs, v3,vg, v7,v8} and gy is induced by {vy, vs, vg}.

Neighborhood Ni(c) is composed of the set G(c) of all possible elements in
all the G, ;(c) sets: G(¢) = Ui<i<j<iGi (c). In other words, N;(c) includes all

-~
AN
N

. @§@ o)

@A -
@ \@ v \@

A proper k-coloring ¢ A possible ¢ € Ny(c)

&
clelelelelen

Fig. 2. Ni: An illustrative example with two partial colorings (¢ and ¢’ are restricted
here to two V; and Vj color classes)

the proper k-colorings that can be obtained from the current k-coloring ¢ by
exchanging the vertices of a connected component induced by color classes V;
and Vj. Figure 2 shows an example where by exchanging the two sets of vertices
{va,v3} and {vg, v7,vs} of connected component g; of the current k-coloring ¢
(left drawing), we obtain a neighboring k-coloring ¢ (right drawing).

2.4.2 Ny: A Neighborhood Based on One-Vertex-Move

The second neighborhood N, is conventional and is simpler than N;. Ny can
be described by the operator OneMove(v, 1, j). Given a proper k-coloring ¢ =
{Vi,..., Vi }, operator OneMove(v,i,7),(1 < i # j < k) displaces one single
vertex v of a color class V; to another color class V; such that the resulting
k-coloring remains proper. For instance, from the current coloring ¢ of the
left drawing of Figure 2, moving vertex v; from V; to V; gives a neighboring
solution. Neighborhood Ny (c¢) is composed of all the possible proper k-colorings
by applying OneMove(v, i, j) to the current k-coloring c. Like neighborhood
N7j, the solutions of this second neighborhood are also proper k-colorings. The
size of the neighborhood Nj is bounded by O(n x k). Moreover, the number
of colors of the neighboring solutions remains the same as that of the current
coloring.

2.4.3 Neighborhood Examination and Tabu List

DNTS applies these two neighborhoods Ny and N in a token-ring way [3,14].
The alternation between Ny and N, is triggered when the current neighbor-
hood is exhausted, i.e., when the current best solution cannot be further im-
proved for a fixed number of consecutive iterations.

As shown in Algorithm 3, at each iteration of our DNTS, a best neighboring

solution is selected among all the allowed solutions (from N; or Ny) to replace
the current solution. Precisely, for the neighborhood N; defined by the op-
erator Fxchange(i, j), we first identify all the connected components in each
pair of color classes for the current k-coloring. Theoretically, this step has a
worst time complexity of O(%2 X @) But in practice, the time consum-
ing is much lower since this operator is related to the density of the graph.
Then we select the best connected components for exchange according to the
objective function f(c) (ties are broken at random). When a set of vertices of
a color class V; are exchanged with a set of vertices of another color class V,
exchanges between V; and V; are forbidden for the next 71" iterations (called
tabu tenure). Finally, we only need to update the connected components in
the pairs of color classes which contain class V; or Vj. For the neighborhood
Ny defined by the OneMove(v, i, j) operator, we go through all legal moves
(there are O(n x k) of them) and select a best move for the OneMove(v, i, j)
operation. When a vertex v of a color class V; is displaced to another color
class Vj, the vertex v is forbidden to go back to V; for the next 7T iterations.

The tabu list is introduced to avoid short-term cycles [5] and is updated after
each iteration. The tabu tenure 7T is determined simply by taking a random
number from {0,...%k — 1}. Moreover, a forbidden Ezchange or OneMove
operation is always accepted if it leads to a neighboring solution better than
the best solution found so far (this is called aspiration according to the tabu
search terminology).

2.4.4 The Perturbation Mechanism

In addition to the basic diversification mechanism of the tabu list, our DNTS
algorithm applies a stronger diversification strategy based on perturbations
to escape deep local optima. The perturbation is triggered when the current
intensification phase cannot update the recorded best solution ¢, for u, consec-
utive iterations (see line 15, Algorithm 3). In this case, the search is considered
to be trapped in a deep local optimum and a strong diversification is needed to
bring the search to a new search region. To achieve this, we apply the follow-
ing perturbation technique to modify the recorded best solution ¢, and then
use this perturbed solution to initialize DN'TS. Suppose ¢, is composed of k
different color classes and let V; be the largest color class. We introduce an
additional color class V.1 and then move randomly one third of the vertices
of V; into Vj,1. In order to prevent the subsequent search from coming back
to ¢, V; and Vi are classified tabu and cannot take part of an Exzchange or
a OneM ove operation for the next T'T iterations (see Section 2.4.3).

2.5 Population Updating

The management of the population usually controls and balances two impor-
tant factors in population-based heuristics: Quality and diversity.

Quality can naturally be measured here using the coloring sum function (f).
The proper k-coloring ¢; is better than ¢; if f(¢;) < f(c;).

We use the following distance H to estimate the diversity. Given two coloring
¢; and ¢j, H;; is the number of vertices in ¢; and ¢; which have different
colors: H;; = [{v € V : ¢;(v) # ¢j(v)}|. A small H,; value indicates a high
similarity between ¢; and ¢;. H is also employed to measure how much diversity
H; p a particular k-coloring ¢; contributes to the entire population P: H; p =
min;; H; ;. Again, a small (large) H; p value indicates that ¢; adds a low
(high) diversity to P.

In MASC, f and H are combined in a s “score” function which is used to decide
whether an offspring solution o replaces an individual in the population P or
not: s(¢;) = f(c;) + ePIVI/HLP e, € P. Precisely we first add o into P and
compute all s(c¢;). We then identify the worse configuration ¢, (i.e., s(c,) is
maximum). The replacement strategy applies the following rules:

Case 1 (¢, is not 0): Remove ¢,, from P;
Case 2 (¢, is 0): Remove the second worse individual from P with probability
0.2, and discard o otherwise.

Notice that unlike partition based distances [20], the distance used here does
not consider explicitly the symmetry of solutions. We adopted this simpler
distance for two practical reasons. First, given that the solutions are all im-
proved by DNTS (tabu search), the population has generally a certain level of
diversity. So the diversity control mechanism has a limited role. Second, the
computation of a partition distance is much more expensive. The experimen-
tal results show that in the context of this work, the above distance seems
sufficient for our MASC algorithm.

3 Experimental Results

Our MASC approach was tested on a benchmark composed of 77 well-known
graphs commonly used to report computational results for MSCP: 39 are
part of the COLOR 2002-2004 competitions and the 38 others are known
as “DIMACS” instances. Most of these graphs are available on-line from

10

http://mat.gsia.cmu.edu/COLORO4 | except the 6 “flat” instances that can
be retrieved from http://mat.gsia.cmu.edu/COLOR/instances.html. The
main characteristics of each graph appear in Tables 2 and 5, see columns 1-4
(COLOR 20022004 instances are at the top of Table 2 and DIMACS instances
at the bottom): Name of the graph, order (|V]), size (|E|), and chromatic sum

Jo.

MASC is programmed in C4++ and compiled using GNU gcc on a PC with 2.7
GHz CPU and 4 Gb RAM. Like many memetic algorithms, we use a small pop-
ulation of 10 individuals. The values of the other parameters were determined
empirically, see Table 1. Notice that MaxGenerations = 50 is the stop condi-
tion that determines the running time of the algorithm. Given its stochastic na-
ture, MASC is run 30 times with different seeds. The best results of our MASC
algorithm are available at http://www.info.univ-angers.fr/pub/hao/masumcol.html.

Table 1
Settings of parameters

Parameter Sect. Description Value

n1 2.4 Maximum number of non-improving moves for T'S using N 500

) 2.4 Maximum number of non-improving moves for T'S using No 1000

o 2.4 Maximum number of non-improving moves of T'S for perturbation 4000
MaxIters 2.4 Maximum iterations of T'S procedure 10000
MaxGenerations 2.5 Maximum number of generations 50

3.1 Computational Results

Columns 6-10 in Table 2 present detailed computational results of our MASC
algorithm: Best result obtained (f,) with the number of required colors (k.),
success rate (SR, percentage of runs such that the sum of colors f, of MASC
is better than the current best known value f;, i.e., f. < f;), average coloring
sum (Avg.), standard deviation (o) and average running time to reach f, (t,
in minutes). Column & shows the chromatic number or its best upper bound
(i.e., the smallest number of colors for which a k-coloring is ever reported).
The reported values are based on 30 independent runs (i.e., with different
random seeds).

From Table 2, one observes that for the 39 COLOR 2002-2004 instances with
known upper bounds (see top part of the table), MASC improves the best
known upper bound for two instances (miles500 and homer) and equals the
best known results for the other 37 graphs. Furthermore, MASC achieves
robust results here since SR = 30/30 and ¢ = 0.0 for these graphs except two

! The homer instance available from http://mat.gsia.cmu.edu/COLOR04/ con-
tains some invalid entries for MSCP (e.g., “e 95 95” appears twice), hence we remove
these two edges before running our algorithm.

11

Table 2
Detailed computational results of MASC on the set of 39 COLOR 2002-2004 in-

stances (upper part) and 24 DIMACS instances (bottom part)

Characteristics of the graphs MASC
Name V] |E| o k Fe(ks) SR Avg. o t
myciel3 11 20 21 1 21(4) 30/30 21.0 00 0.0
mycield 23 71 45 5 45(5) 30/30 45.0 0.0 0.0
mycielb 47 236 93 6 93(6) 30/30 93.0 0.0 0.0
myciel6 95 755 189 7 189(7) 30/30 189.0 0.0 0.1
myciel7 191 2360 381 8 381(8) 30/30 381.0 0.0 1.1
anna 138 493 276 11 276(11) 30/30 276.0 0.0 0.1
david 87 406 237 11 237(11) 30/30 237.0 0.0 0.1
huck 74 301 243 11 243(11) 30/30 243.0 0.0 0.0
jean 80 254 217 10 217(10) 30/30 2170 0.0 0.0
homer 561 1628 1157 13 1 155(13) 1/30 1158.5 1.7 63.9
queen5.5 25 160 75 5 75(5) 30/30 750 0.0 0.0
queen6.6 36 290 138 7 138(8) 30/30 138.0 0.0 1.1
queen7.7 49 476 196 7 196(7) 30/30 196.0 0.0 0.0
queens.8 64 728 201 9 291(9) 30/30 291.0 0.0 12.8
queen9.9 81 1056 409 10 409(10) 9/30 410.5 1.2 1.2
queen$.12 96 1368 624 12 624(12) 30/30 624.0 0.0 0.0
games120 120 638 443 9 443(9) 30/30 443.0 0.0 0.5
miles250 128 387 325 8 325(8) 30/30 325.0 0.0 0.4
miles500 128 1170 < 708 20 705(20) 30/30 705.0 0.0 1.0
fpsol2.i.1 496 11654 3403 65 3403(65) 30/30 3403.0 0.0 8.7
fpsol2.i.2 451 8691 1668 30 1668(30) 30/30 1668.0 0.0 5.7
fpsol2.i.3 425 8688 1636 30 1636(30) 30/30 1636.0 0.0 7.0
mug88_1 88 146 178 4 178(4) 30/30 178.0 0.0 0.1
mug88_25 88 146 178 4 178(4) 30/30 178.0 0.0 0.2
mugl00-1 100 166 202 4 202(4) 30/30 202.0 0.0 0.2
mugl00_25 100 166 202 4 202(4) 30/30 202.0 0.0 0.3
2-Insertions_3 37 72 62 4 62(4) 30/30 62.0 0.0 0.0
3-Insertions_3 56 110 92 4 92(4) 30/30 92.0 0.0 0.0
inithx.i.1 864 18707 3676 54 3676(54) 30/30 3676.0 0.0 7.6
inithx.i.2 645 13979 2050 31 2050(31) 30/30 2050.0 0.0 4.4
inithx.i.3 621 13969 1986 31 1986(31) 30/30 1986.0 0.0 1.8
mulsol.i.1 197 3925 1957 49 1957(49) 30/30 1957.0 0.0 0.1
mulsol.i.2 188 3885 1191 31 1191(31) 30/30 1191.0 0.0 0.2
mulsol.i.3 184 3916 1187 31 1187(31) 30/30 1187.0 0.0 0.2
mulsol.i.4 185 3946 1189 31 1189(31) 30/30 1189.0 0.0 0.2
mulsol.i.5 186 3973 1160 31 1160(31) 30/30 1160.0 0.0 0.2
zeroin.i.1 211 4100 1822 49 1822(49) 30/30 1822.0 0.0 0.2
zeroin.i.2 211 3541 1004 30 1004(30) 30/30 1004.0 0.0 0.1
zeroin.i.3 206 3540 998 30 998(30) 30/30 998.0 0.0 0.1
DSJC125.1 125 736 326 5 326(7) 20/30 326.6 0.9 4.4
DSJC125.5 125 3891 1012 17 1012(18) 2/30 1020.0 3.9 3.5
DSJC125.9 125 6961 2503 44 2503(44) 12/30 2508.0 5.6 1.9
DSJC250.1 250 3218 973 8 974(9) 0/30 990.5 8.3 17.3
DSJC250.5 250 15668 3214 28 3230(31) 0/30 3253.7 14.3 23.1
DSJC250.9 250 27897 8277 72 8280(74) 0/30 8322.7 223 5.6
DSJC500.1 500 12458 2850 12 2940(14) 0/30 30134 28.3 50.4
DSJC500.5 500 62624 10910 48 11101(53) 0/30 11303.5 73.9 2025
DSJC500.9 500 112437 29912 126 29994(126) 0/30 30059.1 31.6 90.9
flat300-20_0 300 21375 3150 20 3150(20) 30/30 3150.0 0.0 0.0
flat300-26_0 300 21633 3966 26 3966(26) 30/30 3966.0 0.0 0.8
flat300-28_0 300 21695 <4261 28 4238(30) 1/30 4313.4 223 309.7
le450_5a 450 5714 1350 5 1350(5) 30/30 1350.0 0.0 0.7
1e450_5b 450 5734 1350 5 1350(5) 30/30 1350.0 0.0 0.4
1le450_5¢ 450 9803 1350 5 1350(5) 30/30 1350.0 0.0 0.2
le450_5d 450 9757 1350 5 1350(5) 30/30 1350.0 0.0 0.5
le450_15a 450 8168 2632 15 2706(19) 0/30 2742.6 13.8 41.3
1le450_15b 450 8169 2642 15 2724(19) 0/30 2756.2 14.8 40.3
le450-15¢ 450 16680 < 3866 15 3491(16) 30/30 3491.0 0.0 45.3
1le450_15d 450 16750 <3921 15 3506(17) 30/30 3511.8 3.6 59.8
le450_25a 450 8260 3153 25 3166(27) 0/30 3176.8 4.4 39.2
1le450_25b 450 8263 3 366 3366(26 1/30 3375.1 3.4 40.3

le450-25d 450 17425 4544 4722(29 0/30 4805.7 27.4 63.4

25)

1e450_25¢ 450 17343 4515 25 4700(31) 0/30 4773.3 252 753
25)
T

DN

instances (homer and queen9.9). The average running time of MASC ranges
from less than one second to about 13 minutes except for the homer instance.

For the set of 24 DIMACS instances (bottom part), the MASC algorithm im-
proves the best known upper bound for 3 graphs (flat300-28_0, le450_15¢, and
le450_15d) and equals the best known results for 10 instances. Unfortunately,
MASC was unable to reach the best known results for the other 11 graphs
(see lines where SR = 0/30). The average running time is less than 76 min-
utes except for the DSJC500.5 and flat300_28_0 instances. Finally, we notice
that the number of colors needed to ensure the best sum coloring (k) can be
larger than the chromatic number or its best upper bound (k).

3.2 Comparisons With State-of-the-art Algorithms

Table 3 compares MASC with 5 recent effective algorithms that cover the best
known results for the considered benchmark: EXSCOL [21], BLS [1], MA [17],
MDS5 [7] and MRLF [12]. No averaged value appears in the table for MA,
MDS5 and MRLF since this information is not given in [7,12,17]. Furthermore,
“~” marks signal that some instances were not tested by some approaches.

Since most reference algorithms give only results for a (small) subset of the
considered benchmark, it is difficult to analyze the performance of these al-
gorithms by statistical tests. Hence, we compare the performance between
MASC and these reference algorithms one by one and summarize the compar-
isons in Table 4. The first column of Table 4 indicates the name of the reference
heuristics, followed by the number #G of graphs tested by each algorithm and
shown in Table 3. The last three columns give the number of times MASC
reports a better, equal, or worse result compared to each reference algorithm.

From Table 4, it can be observed that MASC obtains absolutely no worse
results than MDS5H and MRLF (see the last three lines). Furthermore, MASC
gets better results than these algorithms for 9 and 16 instances respectively.
Our algorithm is also quite competitive with EXSCOL, BLS and MA which
are the most recent and effective methods since it obtains better or equivalent
results for 28, 22 and 49 graphs respectively. MASC reaches worse results than
EXSCOL, BLS and MA only for 8, 3 and 8 graphs respectively.

3.8 Experiment on Large Graphs

We turn now our attention to the performance of our MASC algorithm to
color large graphs with at least 500 vertices. These large graphs are known to
be quite difficult for almost all the existing sum coloring approaches except

13

Table 3

Comparisons of MASC with five state-of-the-art sum coloring algorithms

Graph EXSCOL [21] BLS [1] MA [17] MDS5 [7] MRLF [12] MASC
Name fo J Avg. I Avg. S I+ J+ S Avg.
myciel3 21 21 21.0 21 21.0 21 21 21 21 21.0
myciel4 45 45 45.0 45 45.0 45 45 45 45 45.0
myciel5 93 93 93.0 93 93.0 93 93 93 93 93.0
myciel6 189 189 189.0 189 196.6 189 189 189 189 189.0
myciel7 381 381 381.0 381 393.8 381 381 381 381 381.0
anna 276 283 283.2 276 276.0 276 276 277 276 276.0
david 237 237 238.1 237 237.0 237 237 241 237 237.0
huck 243 243 243.8 243 243.0 243 243 244 243 243.0
jean 217 217 217.3 217 217.0 217 217 217 217 217.0
homer 1157 - - - - 1157 - - 1155 1158.5
queenb.5 75 75 75.0 75 75.0 75 75 75 75 75.0
queen6.6 138 150 150.0 138 138.0 138 138 138 138 138.0
queen7.7 196 196 196.0 196 196.0 196 196 196 196 196.0
queen8.8 291 291 291.0 291 291.0 291 291 303 291 291.0
queen9.9 409 - - - 409 - - 409 410.5
queen8.12 624 — — - 624 — - 624 624.0
games120 443 443 447.9 443 443.0 443 443 446 443 443.0
miles250 325 328 333.0 327 328.8 325 325 334 325 325.0
miles500 < 708 709 714.5 710 713.3 708 712 715 705 705.0
fpsol2.i.1 3403 - - - 3403 3403 - 3403 3403.0
fpsol2.i.2 1668 — — - 1668 — — 1668 1668.0
fpsol2.i.3 1636 - - - 1636 - - 1636 1636.0
mug88_1 178 - — - - 178 — 178 178.0
mug88_25 178 - - - - 178 - 178 178.0
mugl00_1 202 - - - - 202 — 202 202.0
mugl00-25 202 — — - - 202 — 202 202.0
2-Insertions_3 62 - — — — 62 — 62 62.0
3-Insertions_3 92 - - - — 92 — 92 92.0
inithx.i.1 3676 - - - 3676 - - 3676 3676.0
inithx.i.2 2050 - - - 2050 — — 2050 2050.0
inithx.i.3 1986 — — - 1986 — — 1986 1986.0
mulsol.i.1 1957 - - - 1957 - - 1957 1957.0
mulsol.i.2 1191 - - - 1191 - - 1191 1191.0
mulsol.i.3 1187 - - - 1187 - - 1187 1187.0
mulsol.i.4 1189 - - - 1189 — — 1189 1189.0
mulsol.i.5 1160 — — - 1160 — — 1160 1160.0
zeroin.i.1 1822 - - - - 1822 - - 1822 1822.0
zeroin.i.2 1004 — — - 1004 1004 — 1004 1004.0
zeroin.i.3 998 - - - 998 998 - 998 998.0
DSJC125.1 326 326 326.7 326 326.9 326 326 352 326 326.6
DSJC125.5 1012 1017 1019.7 1012 1012.9 1013 1015 1141 1012 1020.0
DSJC125.9 2503 2512 2512.0 2503 2503.0 2503 2511 2653 2503 2508.0
DSJC250.1 973 985 985.0 973 982.5 983 977 1068 974 990.5
DSJC250.5 3214 3246 3253.9 3219 3248.5 3214 3281 3658 3230 3253.7
DSJC250.9 8277 8286 8288.8 8290 8316.0 8277 8412 8942 8280 8322.7
DSJC500.1 2850 2850 2857.4 2882 2942.9 2897 2951 3229 2940 3013.4
DSJC500.5 10910 10910 10918.2 11187 11326.3 11082 11717 12717 11101 11303.5
DSJC500.9 29912 29912 29936.2 30097 30259.2 29995 30872 32703 29994 30059.1
flat300-20_0 3150 3150 3150.0 — - 3150 — — 3150 3150.0
flat300-26_0 3966 3966 3966.0 - - 3966 - - 3966 3966.0
flat300.28.0 < 4261 4282 4286.1 — - 4261 - - 4238 4313.4
le450_5a 1350 - - - 1350 - - 1350 1350.0
1le450_5b 1350 - - - 1350 — — 1350 1350.0
1le450_5¢ 1350 — — - 1350 — — 1350 1350.0
1le450_5d 1350 - - - - 1350 - - 1350 1350.0
le450_15a 2632 2632 2641.9 — - 2681 - — 2706 2742.6
1le450_15b 2642 2642 2643.4 - - 2690 - - 2724 2756.2
1le450_15¢ < 3866 3866 3868.9 - - 3943 - - 3491 3491.0
1le450_15d <3921 3921 3928.5 - - 3926 - - 3506 3511.8
le450_25a 3153 3153 3159.4 - - 3178 - - 3166 3176.8
le450_25b 3366 3366 3371.9 — - 3379 — — 3366 3375.1
le450_25¢ 4515 4515 4525.4 - - 4648 - - 4700 4773.3
le450_25d 4544 4544 4550.0 - - 4696 - — 4722 4805.7

14

Table 4
MASC vs. five state-of-the-art sum coloring algorithms
Results of MASC (f«)
Better Equal Worse

Competitor #G

EXSCOL [21] 36 12 16 8

BLS [1] 25 5 17 3

MA [17] 57 10 39 8

MDS5 [7] 34 9 25 0

MRLF [12] 25 16 9 0

Table 5
Results of MASC on 17 large graphs with at least 500 vertices
Characteristics of the graphs EXSCOL MASC

Name 4 |E| fo [« Avg. k fo(ks) Avg. o t
DSJC500.1 500 12458 2850 2850 2857.4 12 2841(14) 28441 32 289
DSJC500.5 500 62624 10910 10910 10918.2 48 10897(51) 10905.8 4.6 73.3
DSJC500.9 500 112437 29912 29912 29936.2 126 29 896(131) 29907.8 5.8 59.0
DSJC1000.1 1000 49 629 9003 9003 9017.9 20 8995(22) 9000.5 3.0 70.7
DSJC1000.5 1000 249826 37598 37598 37673.8 83 37594(87) 37597.6 1.2 200.4
DSJC1000.9 1000 449449 103464 103464 103531.0 223 103464(231) 103464.0 0.0 125.9
flat1000-50.0 1000 245000 25500 25500 25500.0 50 25500(50) 25500.0 0.0 0.1
flat1000-60-0 1000 245830 30100 30100 30100.0 60 30100(60) 30100.0 0.0 114.6
flat1000-76_0 1000 246708 37167 37167 37213.2 82 37167 (85) 37167.0 0.0 1.1
latin_sqr_10 900 307350 42223 42223 42392.7 98 41444(100) 41481.5 19.1 101.2
wap05 905 43081 13680 13680 13718.4 50 13669(51) 13677.8 3.7 3.3
wap06 947 43571 13778 13778 13830.9 46 13776(48) 137778 0.6 4.1
wap07 1809 103368 28629 28629 28 663.8 46 28617(50) 28624.7 3.8 12.4
wap08 1870 104176 28 896 28 896 28 946.0 45 28 885(50) 28 890.9 3.2 15.1
qg.order30 900 26 100 13950 13950 13950.0 30 13950(30) 13950.0 0.0 3.8
qg.order40 1600 62400 32800 32800 32800.0 40 323800(40) 32800.0 0.0 11.8
qg.order60 3600 212400 109800 110925 110993.0 60 109800(60) 109 800.0 0.0 290.6

EXSCOL which dominates the other heuristics particularly on large graphs.
We show a new experiment with MASC applied to color 17 large graphs. In
this experiment, we run MASC 10 times on each graph under exactly the
same condition as in Section 3.1. The only difference is that we use the so-
lution of EXSCOL? as one of MASC’s 10 initial solutions while the 9 other
initial solutions are generated according to the procedure described in Section
2.2. With this experiment, we aimed to investigate two interesting questions.
Is it possible for MASC to improve the results of the powerful EXSCOL algo-
rithm? Does the initial population influence the performance of MASC? The
computational outcomes of this experiment are provided in Table 5.

In Table 5, column 4 presents the best known result (f) in the literature,
columns 5-6 present the best result (f.) and the average coloring sum (Avg.)

2 Available at http://www.info.univ-angers.fr/pub/hao/exscol.html

15

of EXSCOL and columns 7-11 present detailed computational results of our
MASC algorithm: Best result obtained (f.) with the number of required colors
(k.), average coloring sum (Avg.), standard deviation (o), and average running
time to reach f, (¢, in minutes). One notices that the values of columns 4 and
5 are identical except the gg.order60 instance.

Table 5 shows that with the help of its search mechanism, our MASC algorithm
is able to further improve the best known results of 10 instances (entries in
bold). This is remarkable given that very few existing approaches can even
equal the previous best known results. Moreover, if we contrast the results of
the three DSJC500.x graphs (z = 1,5,9) reported in Tables 2 and 5, it is clear
that the initial population impacts directly MASC’s outcomes. This indicates
that the performance of MASC could be further improved by using a more
powerful coloring algorithm to generate the initial solutions of its population.

4 Analysis of MASC

In this section, we investigate the influence of three important ingredients of
the proposed memetic algorithm, i.e., the multi-parent crossover operator, the
combined neighborhood and the improvement of MASC over the initial pop-
ulation. Experiments were based on 16 selected graphs of different types, for
which some reference algorithms cannot achieve the best known results. Hence,
these selected instances can be considered to be difficult and representative.

4.1 Influence of the Multi-parent Crossover Operator

For our memetic algorithm, it is relevant to evaluate the effectiveness of its
crossover operator. To verify this, we carry out experiments on the 16 selected
graphs and run both MASC (using the MGPX crossover) and DNTS (without
MGPX) for 30 times (with the same parameter sy, po and g, settings as
defined in Table 1). The DNTS (without MGPX) starts with a single solution
which is generated for MASC. DNTS stops when a maximum number of 5x 10°
iterations in order to make sure that MASC and DNTS are given the same
search effort. The results are given in Table 6.

From Table 6, one notices that DN'TS equals and improves respectively 5 and
3 best known results while MASC equals and improves respectively 5 and 11
best known results. Furthermore, the last column #¢ (t-test) indicates whether
the observed difference between MASC and DNTS is statistically significant
when a 95% confidence t-test is performed in terms of the best result obtained
(fe). If MASC and DNTS achieve always the same results, ¢¢ column is marked

16

Table 6
Comparative results of MASC and DNTS

Graph MASC DNTS i
Name v fe Avg. fx Avg.
anna 276 276 276.0 276 276.0 -
queen6.6 138 138 138.0 138 138.0 -
miles250 325 325 325.0 325 325.0 -
miles500 < 709 705 705.0 705 7056 Y
DSJC125.1 326 326 326.6 326 3286 Y
DSJC125.5 1012 1012 1020.0 1016 1029.8 Y
DSJC125.9 2503 2503 2508.0 2506 2530.1 Y
DSJC250.1 973 974 990.5 981 997.7 Y
DSJC250.5 3219 3230 3253.7 3234 3301.7 Y
DSJC250.9 < 8286 8280 8322.7 8321 83819 Y
flat300-26_0 3966 3966 3966.0 3966 3966.0 -
flat300-28.0 < 4282 4238 43134 4303 4406.3 Y
1le450_15¢ < 3866 3491 3491.0 3491 34921 Y
le450-15d <3921 3506 3511.8 3506 35150 Y
le450-25¢ 4515 4700 4773.3 4749 48039 Y
le450-25d 4544 4722 4805.7 4784 48353 Y

by ‘-’. The t-test indicates that MASC is statistically better than DNTS for
12 out of 16 cases except for the instances where DNTS can achieve the best
known results (f,). These comparative results provide clear evidences that the
MGPX crossover operator plays an important role in the MASC algorithm.

4.2 Influence of the Neighborhood Combination

The neighborhood is an important element that influences the local search
procedure. Our proposed algorithm relies on two different neighborhoods: NV,
(neighborhood based on connected components) and Ny (neighborhood based
on one-vertex-move) which are explored in a token-ring way (see Section 2.4).
In this section, we investigate the interest of this combined use of the two
neighborhoods. For this purpose, we carried out experiments on the 16 selected
graphs to compare the original Double-Neighborhood Tabu Search (DNTS)
with two variants which uses only one neighborhood N; or Ny. We use below
TSy1 and TSpo to denote these two variants. These three TS procedures
(DNTS, TSy; and TSy2) are run under the same stop condition, i.e. limited
to 5 x 10° iterations.

We run 30 times these TS procedures to solve each of the 16 selected graphs
and report the computational outcomes (the best and average results) in Table
7. One easily observes that DN'TS obtains better or equal results compared
to TSyy and TSy, for all the instances in terms of the best known result (f,)

17

and the average result (Avg.). The t-test ¢t; (i = 1,2) in the last two columns
confirms that with a 95% confidence level DNTS is slightly or significantly
better than TSy and TS yo. This experiment demonstrates thus the advantage
of the token-ring combination of the two neighborhoods compared to each
individual neighborhood.

Table 7
Comparative results of the tabu search improvement method according to the neigh-
borhood employed

Graph DNTS TSn2 TSn1 ty th
Name o I+ Avg. I+ Avg. I+ Avg.
anna 276 276 276.0 282 285.8 276 276.0 Y
queen6.6 138 138 138.0 138 138.4 138 138.0 Y
miles250 325 325 325.0 346 361.6 335 340.7 Y Y
miles500 < 709 705 705.6 722 736.0 719 7309 Y Y
DSJC125.1 326 326 328.6 334 340.8 329 334.0 Y Y
DSJC125.5 1012 1016 1029.8 1031 1045.1 1020 1031.8 Y N
DSJC125.9 2503 2506 2530.1 2514 25576 2512 2538.3 Y N
DSJC250.1 973 981 997.7 1004 1021.3 1022 1039.9 Y Y
DSJC250.5 3219 3234 3301.7 3271 33239 3260 3306.5 Y N
DSJC250.9 < 8286 8321 8381.9 8347 8405.6 8318 83875 Y N
flat300-26_0 3966 3966 3966.0 3966 3966.0 3966 3966.0
flat300-28.0 < 4282 4303 4406.3 4347 44278 4332 44355 N Y
1le450-15¢ < 3866 3491 34925 3503 3517.2 3508 3551.8 Y Y
le450-15d <3921 3506 3515.0 3528 35385 3526 3568.2 Y Y
le450-25¢ 4515 4749 4803.9 4828 4893.9 5005 5067.4 Y Y
le450-25d 4544 4784 4835.3 4848 4907.0 5035 5119.1 Y Y

4.8 Improvements of MASC over TABUCOL

Recall that the initial population is generated by the well-known graph color-
ing procedure TABUCOL. It is interesting to know to which extent our MASC
procedure (which is specially designed for the Minimum Sum Coloring Prob-
lem) can improve the quality of solutions generated by TABUCOL in terms
of sum of colors. For this purpose, we re-run 30 times our MASC procedure
on the set of 16 selected graphs. Like for the previous experiments, we report
in Table 8 the best and average objective value f, both for TABUCOL (ini-
tial population) and MASC (final population). Given the stochastic nature
of TABUCOL and MASC, some results reported in this experiment may be
slightly different from those reported in Table 2.

From Table 8, one easily observes that MSCP improves significantly the initial
results generated by TABUCOL. Indeed, the best and average sums of colors
achieved by MSCP are systematically smaller (better) than those of TABU-

18

Table 8
Comparative results of MASC and TABUCOL

Graph MASC TABUCOL

Name o I+ Avg. I Avg.

anna 276 276 276.0 371 3744 Y
queen6.6 138 138 138.0 141 141.0

miles250 325 325 325.0 429 436.6 Y
miles500 <709 705 705.0 1040 1066.0 Y
DSJC125.1 326 326 327.0 337 3482 Y
DSJC125.5 1012 1012 1021.5 1028 10470 Y
DSJC125.9 2503 2503 2509.6 2523 25639 Y
DSJC250.1 973 985 993.8 1022 1059.1 Y
DSJC250.5 3219 3230 3263.2 3279 33124 Y
DSJC250.9 < 8286 8290 8319.5 8338 83738 Y
flat300-26_0 3966 3966 3966.0 8966 3966.0

flat300-28.0 < 4282 4238 43134 4363 44304 Y
1le450-15¢ < 3866 3491 3491.0 3532 3584.7 Y
le450.15d <3921 3506 3512.6 3567 3591.8 Y
1le450-25¢ 4515 4743 47983 5384 54486 Y
le450-25d 4544 4750 48334 5226 54644 Y

COL for all the graphs except one case (flat300-26_0) for which TABUCOL
alone achieves already the best known result. Furthermore, the last column ¢¢

(t-test) confirms with a 95% confidence level the significance of the improve-
ments of MASC over the solutions provided by TABUCOL.

5 Conclusion

In this paper, we presented a memetic algorithm (MASC) to deal with the
Minimum Sum Coloring Problem (MSCP). The proposed algorithm employs
an effective tabu search procedure with a combination of two neighborhoods,
a multi-parent crossover operator and a population updating mechanism to
balance intensification and diversification.

We assessed the performance of MASC on 77 well-known graphs from the
DIMACS and COLOR 2002-2004competitions. MASC can improve 15 best
known upper bounds including 10 large and very hard graphs with at least
500 vertices while equaling 54 previous best results. Compared with five recent
and effective algorithms which cover the best known results for the tested
instances, our MASC algorithm remains quite competitive.

Furthermore, we investigated two important components of the proposed algo-
rithm. The experiments demonstrate the relevance of the multi-parent crossover
operator and the combined neighborhood for the overall performance of MASC.

19

Finally, we showed the proposed MASC approach significantly improves the
classical tabu search graph coloring approach for the Minimum Sum Coloring
Problem.

Acknowledgment

We would like to thank the anonymous referees for their helpful comments
and suggestions which helped us to improve the paper. The work is partially
supported by the RaDaPop (2009-2013) and LigeRo projects (2009-2013) from
the Region of Pays de la Loire (France). Support for Yan Jin from the China
Scholarship Council is also acknowledged.

References

[1] U. Benlic, J.K. Hao. A study of breakout local search for the minimum sum
coloring problem. In: L. Bui, Y. Ong, N. Hoai, H. Ishibuchi, P. Suganthan (eds.),
Simulated Evolution and Learning, vol. 7673 of Lecture Notes in Computer
Science, Springer, Berlin/Heidelberg, Germany, 2012, pp. 128-137.

[2] H. Bouziri, M. Jouini. A tabu search approach for the sum coloring problem.
Electronic Notes in Discrete Mathematics 36 (2010) 915-922.

[3] L, Di Gaspero, A. Schaerf. Neighborhood portfolio approach for local search
applied to timetabling problems. Journal of Mathematical Modeling and
Algorithms 5(1) (2006) 65-89.

[4] P. Galinier, J.K. Hao. Hybrid evolutionary algorithms for graph coloring.
Journal of Combinatorial Optimization 3 (4) (1999) 379-397.

[5] F. Glover, M. Laguna. Tabu Search. Kluwer Academic Publishers, Dordrecht,
The Nederlands, 1997.

[6] J.-P. Hamiez, J.K. Hao. Scatter search for graph coloring. In: P. Collet,
E. Lutton, M. Schoenauer, C. Fonlupt, J.K. Hao (eds.), Artificial Evolution,
vol. 2310 of Lecture Notes in Computer Science, Springer, Berlin / Heidelberg,
Germany, 2002, pp. 168-179.

[7] A.Helmar, M. Chiarandini. A local search heuristic for chromatic sum. In: L. Di
Gaspero, A. Schaerf, T. Stutzle (eds.), Proceedings of the 9th Metaheuristics
International Conference, 2011, pp. 161-170.

[8] A. Hertz, D. de Werra. Using tabu search techniques for graph coloring.
Computing 39 (4) (1987) 345-351.

20

[9] Z. Kokosinski, K. Kwarciany. On sum coloring of graphs with parallel genetic
algorithms. In: B. Beliczynski, A. Dzielinski, M. Iwanowski, B. Ribeiro (eds.),
Adaptive and Natural Computing Algorithms, vol. 4431 of Lecture Notes in
Computer Science, Springer, Berlin / Heidelberg, Germany, 2007, pp. 211-219.

[10] E. Kubicka. The chromatic sum of graphs. Ph.D. thesis, Western Michigan
University, USA (1989).

[11] E. Kubicka, A. Schwenk. An introduction to chromatic sums. In: Proceedings
of the 17th ACM Annual Computer Science Conference, ACM Press, New York
(NY) USA, 1989, pp. 39-45.

[12] Y. Li, C. Lucet, A. Moukrim, K. Sghiouer. Greedy algorithms for the minimum
sum coloring problem. In: Logistique et Transports Conference, 2009.

[13] Z. Lii, J.K. Hao. A memetic algorithm for graph coloring. European Journal of
Operational Research 203 (1) (2010) 241-250.

[14] Z. Li, J.K. Hao, F. Glover. Neighborhood analysis: a case study on curriculum-
based course timetabling. Journal of Heuristics 17(2) (2011) 97-118.

[15] M. Malafiejski. Sum coloring of graphs. In: M. Kubale (ed.), Graph Colorings,
vol. 352 of Contemporary mathematics, American Mathematical Society, New
Providence (Rhode Island) USA, 2004, pp. 55-65.

[16] E. Malaguti, M. Monaci, P. Toth. A metaheuristic approach for the vertex
coloring problem. INFORMS Journal on Computing 20 (2) (2008) 302-316.

[17] A. Moukrim, K. Sghiouer, C. Lucet, Y. Li. Upper and lower bounds for the
minimum sum coloring problem. Submitted, 2013. https://www.hds.utc.fr/
~moukrim/dokuwiki/doku.php?id=en:mscp

[18] P. Moscato, C. Cotta. A gentle introduction to memetic algorithms. In:
F. Glover, G. Kochenberger (eds.), Handbook of Metaheuristics, vol. 57 of
International Series in Operations Research and Management Science, chap. 5,
Kluwer Academic Publishers, Dordrecht, The Nederlands, 2003, pp. 105-144.

[19] F. Neri, C. Cotta, P. Moscato (eds.). Handbook of Memetic Algorithms. Vol.
379 of Studies in Computational Intelligence, Springer, Berlin / Heidelberg,
Germany, 2012.

[20] D. Porumbel, J.K. Hao, P. Kuntz. An evolutionary approach with diversity
guarantee and well-informed grouping recombination for graph coloring.
Computers & Operations Research 37 (10) (2010) 1822-1832.

[21] Q. Wu, J.K. Hao. An effective heuristic algorithm for sum coloring of graphs.
Computers & Operations Research 39 (7) (2012) 1593-1600.

21

